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Abstract—In this project, we present an end-to-end early
warning system for an old car. We have setup the hardware
platform based on Jetson Nano, consisting of sensors such as
RTK GPS, Radar and Stereo Camera. With these sensors we
have collected data under the ROS framework. With the collected
raw data we have studied several deep learning based perception
algorithms with emphasis on 2D object detection with radar
fusion and 3D object detection. The system will generate buzzing
sound to assist the driver if it detects potential risks, such as
unplanned lane change, or a pedestrian in the way.

I. INTRODUCTION

Many accidents involving pedestrians could be prevented
by drivers faster reaction or more attentive road observation.
Human reaction times at the wheel are often measured in
seconds, instead of milliseconds. That is the motivation for
this Driving Assistant System. In this project we developed an
end to end early warning system by setting up the hardware
platform, collecting multiple types of raw sensor data and
applying deep learning based algorithms on the data to obtain
perception of the driving surroundings and notify the driver in
case of potential risks. The overall architecture of the project
is demonstrated in Fig 1.

Fig. 1: Project Overview Diagram

The remaining of this report is organized in the following
way: in section II we briefed the background on the key
components of the whole system; in section III we described
the hardware platform setup; in section IV we demonstrated
the ROS-based software setup and specifically the 2D object
detection and camera-radar fusion pipelines; in section V we
studied two kinds of 3D object detection algorithms; in section
VI we illustrated the lane keeping algorithm. The whole report
is wrapped up in section VII with plan of future work.

II. BACKGROUND ON KEY COMPONENTS OF THE SYSTEM

A. Background on 2D Object Detection
We can currently identify two main approaches to object

detection problem: region-proposal based models and single-
shot detectors. The former approach has a two-stage pipeline,
where the first stage is responsible for selecting region
proposals, and the second stage performs classification on
the selected regions. The second approach handles object
detection as a regression problem with a single stage
architecture. A recent in-depth review of different detection
models, including their trade-offs and performance results has
been described in[24]. The topic of detection models has been
a field of intensive research over the recent years, bringing
significant improvements to object detection on images via
CNN-based models. Most importantly, the inference time
was greatly reduced from multiple seconds for a single
frame in 2013[5], to multiple FPS (Frames Per Seconds) as
reported from state of the art models, such as YOLO[16],
Faster-RCNN[17] or SSD[9] and their variations. This
inference-time performance improvement makes CNN-based
object detection feasible for use in real-time applications such
as autonomous driving.

In this paper, we choose mask-RCNN[6] as the 2D
image detector. Mask-RCNN, aside from the fine-tuned
Faster-RCNN-based object detection, provides an additional
instance segmentation branch. This additional information
could be very useful for autonomous driving scenarios as it
could enable pedestrian pose estimation and tracking. We are
hoping to leverage it in the future work.

B. Background on Radar Detection
Radar has been long adapted by the automotive industry for

basic autonomous driving assistant tasks such as emergency
braking and cruise control. However, the recent radar
technology advancements and the introduction of 77GHz
radars increased the resolution of these sensors to the point
in which radar became a candidate for object detection and
sensor fusion with camera. In this paper we present a simple
radar point cloud processing pipeline, as well as fuse the
results with camera, by matching the detections from the 2D
image with the point cloud clusters.



We’re hoping that the resulting comprehensive fusion
information consisting of: 3D position, object label,
confidence score and reflectivity to radar, could be groundwork
for more comprehensive pedestrian tracking, especially when
supplemented with human pose estimation and doppler-based
speed measurement.

C. Background on 3D Object Detection

A comprehensive summary regarding 3D object detection
has been presented in [4]. As depicted in TABLE III of this
article, 3D object detection could be based on RGB image
from monocular camera, or on point clouds from Lidar, or
a fusion of these two sensors. For the methods working on
point clouds, the main challenge is the vast sample space.
There are currently three categories of methods to represent
the 3D space. The first one is by projection, either spherical
projection[19][20], or bird eye view projection[7]. The second
method is to voxelize the 3D space and represent each voxel
with a single point. The third method is to use the point
cloud directly, such as PointNet[13][14]. As expected, the
fusion method outperforms the others since it incorporates
the information from RGB image with the point cloud. There
are three most popular fusion based algorithms, MV3D[21],
AVOD[8], and Frustum PointNet[12].

In this project, we have studied the SqueezeSeg algorithm
and the Frustum PointNet algorithm. But a booming
algorithm[22] has come to world, which, other than providing
a bounding box for the object, uses a key point to represent
the object and regresses to obtain all the other features such
as 2D BBox, 3D BBox and even person pose. This will be
our future work.

D. Background on Lane Keeping

Lane control is one of the most important aspects for
an autonomous car in order to be able to change lane
autonomously. This project focuses on giving the modern
perception ability input to the system and convey a warning
output to the driver which will alert the driver to be more
careful while on the road. This feature is also in the same
family with some of the existing Lane Departure Warning
Systems such as Lane Keeping Assist (LKA) and Lane
Centering Assist (LCA) that are available in some of the
recent cars. The early technique for Lane Keeping includes the
use of infrared sensors[3] while most of the recent technology
utilize a camera[18] and real-time image processing.

III. HARDWARE SETUP

The hardware platform we used is a 1999 Mercedes
CLK320. It does not have the sensory or the computing
hardware, which are typically components of an autonomous
vehicle. We retrofitted the car with the following sensors:

Fig. 2: Radar Mounted on the 1999 Mercedes CLK

1) Texas Instruments 76-81GHz AWR1642BOOST evalu-
ation module

2) 2x Emlid Reach RTK GNSS module + 3DR SiK
Telemetry module

3) Stereolabs ZED Camera

The computing platform we used is Nvidia Jetson Nano.
The full setup is shown in Figure 3.

Fig. 3: Hardware Platform Overview

It is important to emphasize that parts of the inference,
especially those related to 2D and 3D detection, were carried
out on collected data on an external PC. Nevertheless, the
system is capable of real-time deployment, given that Nvidia
Jetson Nano were replaced with a more capable computing
unit.



IV. 2D DETECTION, CAMERA-RADAR FUSION AND
SOFTWARE SETUP

A. ROS-based Architecture

Most of the software components described in this paper
are implemented as ROS[15] nodes. However, the use of ROS
is mainly as a wrapper to provide real-time message exchange
between nodes and could be substituted with a different mes-
sage queue middleware. Even though ROS doesn’t officially
support versions of python above 2.7, the nodes were purpose-
fully implemented in python 3.6 for better compatibility with
other dependencies. The schematic with the overview of the
architecture is available in Figure 4.

Fig. 4: ROS Architecture Schematic

B. 2D Object Detection Pipeline

Fig. 5: 2D Object Detection Node Schematic

We use a keras implemenation[1] of mask-RCNN[6] model.
The node subscribes to the images from the camera, performs
inference, and publishes information about each detected ob-
ject including:

• bounding box
• predicted label
• confidence score for the label
• mask (instance segmentation result)
Figure 6 contains an example of mask-RCNN inference on

the collected data.

1) Training: We performed 48-hours of training of the
model on COCO dataset using Nvidia P100 GPU on HPC.
After hyperparameter optimization we used learning rate of
0.0025, which is different than in the original paper[6]. The
reason for this difference might be a smaller mini-batch size
(due to 1 GPU setup we train with mini-batches of 2 images,
instead of 16 images), or differences between how keras and

Fig. 6: mRCNN Inference Example

pytorch implement adam optimizer. After visual inspection of
the inference results, we decided to use the weights from[1]
trained for a much longer time.

2) 2D object detection performance: The model performs
very well, even in night driving scenarios (Figure 6). The
model is very robust in detecting key self-driving objects such
as cars, people and traffic lights. The model also performs
very well at detecting object in context and from partial
information, such as in the person at the wheel example in
Figure 7.

Fig. 7: Inference on SJSU Campus

3) 2D object detection real-time performance
considerations: The node does not yield very good real-time
performance. A single inference takes around 450ms and
we’re able to run the model in a stable manner as a ROS
node at 2Hz. This inference time is to be expected, as the
paper’s[6] authors achieved a 200ms inference time.

The state of the art models are capable of achieving results
around 20FPS on newest GPU hardware, with some heavily
downsized detection models being capable of achieving up
to 30-45FPS[24] at the cost of accuracy. While 20FPS is
sufficient for some autonomous driving tasks, it is insufficient
for safety-critical parts of an autonomous driving system.
Possible ways to slightly improve the performance include
running the algorithms on multi-GPU setup and improving



the memory pipeline for maximum GPU utilization.

C. Radar Pipeline

The radar node subscribes to the point cloud published by
the radar driver and performs K-means clustering on the point
cloud. The clusters whose points are too sparse are rejected
as noise. The node publishes the following information:

• centroids: the X,Y position of the center of the cluster
• sizes (x,y): the estimated size of the cluster (bounding

box)
• reflectivity: total reflectivity of all the points in each

cluster.

Fig. 8: Radar Node Schematic

1) Radar pipeline real-time performance: The inference
time of the radar pipeline is between 35-40ms, which results
in a single node being unable to keep up with the 30Hz
publish rate of the radar Point Clouds. In order to ensure
processing in real-time, we split the load evenly between two
nodes running on separate CPU cores and publishing to the
same topic. Possibly, with a faster processor just one node
would be sufficient.

D. GPS/GNSS Pipeline

One of the Emlid Reach RTK GNSS modules is set up as
a base station, while the other one is set up as a receiver on
the car. The 900Mhz radio is used for sending corrections
from the base to the receiver.

The node subscribes to the NavSatFix message stream from
the GPS driver. After receiving the message, it calculates
the distances between consecutive points using Vincenty’s
Formula. Speed and acceleration are calculated by derivation
of the calculated distance. The node publishes the vehicle’s
heading and current speed, as well as a GPS-based timestamp.

1) GPS pipeline real-time performance: The node operates
at the frequency of NMEA frames reception from the GNSS
module, which is between 1 and 10Hz. The inference takes
less than 1ms.

Fig. 9: GPS Node Schematic

E. Radar-Camera Fusion node

The fusion node works in the following way: it subscribes
to the cluster information published by radar pipeline and
to bounding boxes published by the 2D object detection
pipeline. Then, the 90 degree field of view of the radar is
mapped onto slightly bigger 110 degree field of view of the
camera.

Next, the algorithm iterates over all the detected objects in
the image and tries matching the objects with point clusters.
If a match is made within the margin of +-10% the object’s
distance from the camera, the object is associated with the
cluster. Figure 11 shows the fusion result overlaid on the
radar scan point cloud after clustering.

Finally, the node publishes the combined information con-
sisting of:

• label with confidence score
• X,Y,Z position (in camera’s frame)
• object’s reflectivity to radar

Fig. 10: Radar-Camera Fusion Result

The reflectivity information from the radar is not fully
utilized in the fusion. In the future it could be used to
differentiate between highly reflective objects (e.g. car body)
and the ones with low reflectivity (e.g. bushes at the side of
the road).

V. 3D OBJECT DETECTION ALGORITHM

A. SqueezeSeg Algorithm

1) Algorithm principle: The SqueezeSeg algorithm projects
the 3D point cloud into a 2D spherical surface. Given the
projection resolution δθ and δφ, each point (x, y, z) in the



Fig. 11: Radar-Camera Fusion Result

3D space could be projected to a point in the surface at the
position (i, j), where,

i =

arcsin( y√
x2+y2

)

δθ

 (1)

j =

arcsin( z√
x2+y2+z2

)

δφ

 (2)

Each of the point on the surface contains the original
information including coordination in 3D space, intensity,
etc. The projected samples are further applied to a encoder-
decoder structured CNN, with the purpose to further reduce
the tensor dimension. The feature extraction is executed on
the down sampled space and then up sampled to the original
space.

2) Train the network: This part is performed on the SJSU
HPC platform, using data set from KITTI, with tensor board
to visualize the training procedure. This work has been
detailed in Mengshi Li’s homework submission, thus we omit
it here to save space. To wrap it up, the main challenge is to
setup the training environment under HPC, where we have
no privilege to install packages and there is no GUI services.

B. Frustum PointNet Algorithm

1) Algorithm principle: The main idea of this
algorithm[12], as shown in Fig-12, is to construct a
frustum based on the 2D bounding box and the calibration
matrix between the RGB image and the 3D point cloud,
which reflects the relative geometry information for the
camera and the Lidar sensor. The network assumes that there
is only one object inside the frustum, and for the points which
fall into this frustum, apply them to the PointNet[14] neural
network directly, without any voxelization or projection. The
PointNet will first do segmentation, then propose a 3D BBox
for the clustered points. By constraining points within the
frustum, the dimension of the tensor input to the PointNet is
of reasonable size for the model training.

Fig. 12: Major Components of the Frustum PointNet

(a) 2D BBox (b) Raw Point Cloud

(c) Point Cloud inside Frustum (d) Ground Truth 3D BBox

Fig. 13: Data Preparation for PointNet

”Instead of solely relying on 3D proposals, this method
leverages both mature 2D object detectors and advanced 3D
deep learning for object localization, achieving efficiency as
well as high recall for even small objects. Benefited from
learning directly in raw point clouds, this method is also able
to precisely estimate 3D bounding boxes even under strong
occlusion or with very sparse points. Evaluated on KITTI
and SUN RGB-D 3D detection benchmarks, this method
outperforms the state of the art by remarkable margins while
having real-time capability.”[12]

2) Training the PointNet model: The training procedure is
operated on the HPC platform. The data set we are using is
from KITTI.

The key challenge in the training process is to prepare
the data for the PointNet neural network, where we need to
provide both the points inside a proposed frustum and the
ground truth 3D BBox constructed out of the KITTI data set.
The data preparation process is illustrated in Fig-13.

First we extract the 2D ground truth bounding box from
the KITTI data set, as shown in Fig-13a. Combining it with
the calibration matrix, we could construct the frustum, and
with it as the boundary, we could select points inside it as
the input tensor, as shown in Fig-13c. For training purpose,
we also need the 3D ground truth bounding box, as shown in
Fig-13d.



Once the data set is ready we could begin the training
procedure and observe the evaluation results via tensor board.
This is similar to what we did for the SqueezeSeg algorithm.

3) Inference using Frustum PointNet: On top of the git
repository[23], we have developed a 3D object detection
application. The diagram of this application is similar as Fig-
12. It consumes as input the static RGB image, calibration
matrix and the 3D point cloud; and outputs the 2D BBox and
3D BBox. Since there is no GUI service on the HPC, we
deployed this application on the lab PC HP-870 with GTX-
1080 GPU. The main framework/dependencies it is using
includes:

• Python 2.7
• CUDA 8.0
• Tensorflow-GPU 1.4.0
• OpenCV 4.1.0
• Mayavi 4.6.2 (to visualize point cloud)
All the Python dependencies are installed inside the Python

virtual environment for better isolation and easier mitigation.

To propose the 2D BBox we need to utilize the mature 2D
Object Detection Neural Network model. Supporting of 2D
object detection model is straight forward, the user just needs
to copy the pre-trained 2D model into the model folder and
mark the configuration files accordingly. In this deployment
we have included SSD[9], Fast RCNN[17]. The 3D object
detection model is supported in a similar way. However the
PointNet requires some custom tensorflow operators, which
need to be pre-compiled before any inference.

Fig-14 shows a sample output of the application, where
Fig-14a demonstrates the frustum point cloud and Fig-14b
illustrates the 3D BBox, with yellow points as the vertexes
and red point as the center point.

4) More to work on: We have trained the model and
done some preliminary inference with the Frustum PointNet
model. So far the model takes as input the point clouds of
Lidar sensor. However Lidar is expensive, especially under
the scenario where we aim to retrofitting an old car. So the
first future network is to use stereo camera output as the data
input. There are two main challenges for this work. First
is that the point cloud from stereo camera is different from
that of the Lidar sensor; the second one is that to construct
the frustum, we need the calibration matrix between RGB
image and the point cloud. This requires us to take into
consideration the geometrical features of the stereo camera.

VI. LANE KEEPING ALGORITHM

The lane keeping algorithm that was used is based on the
image processing technique known as Canny Edge Algorithm
developed by John F. Canny that was called Canny Edge
Detector [2]. There are several steps in the image processing

(a) Frustum Point Cloud

(b) Estimated 3D BBox

Fig. 14: Sample Output of Inference Application

pipeline in order to create the result. The pipeline to identify
the lane in the every single frame of the input video is a
combination of several steps running in a loop using a Python
script with OpenCV and Numpy libraries (Figure 15).

Fig. 15: Lane Detection Pipeline

1) Image preparation: Every single frame of the image
needs to be prepared in order for the Canny Edge Detector
algorithm to work effectively. All raw images will be
subjected to noise in the images array. So, the first step is
to apply grayscale filter onto the image. This will both ease
the image processing technique and reduce the computing
time required. The next step is to apply a 5x5 Gaussian filter
to remove any noise on the image. This Gaussian filter will
average the value of the array on the image to prevent any
inconsistent pixel value that is either too high or low. From
the visible eye, the image will seem to be blurred (Figure 16a).

2) Canny Edge Detector: As the image is ready, we apply
the Canny Edge Detector onto the image. This will filter
the image with Sobel Kernel in both vertical and horizontal



(a) Gaussian Filter (b) Canny Edge Detector

Fig. 16: Apply Canny Edge Detector on the image

(a) Image plot (b) ROI Polygon Mask

Fig. 17: Create Region of Interest

direction to get the derivative in both directions, Gx and Gy
[10]. The result is as shown in (Figure 16b). Then we will be
able to find edge direction and edge gradient as follows:

EdgeGradient(G) =
√
(Gx)2 + (Gy)2 (3)

Angle = tan−1 = (Gy/Gx) (4)

3) Region of Interest: One important step before creating
the line is to to create the region of interest for the
Canny Edge. We create a polygon shape for the region of
interest to allow only edges within this region of interest will
be processed for the next step of creating the line (Figure 17b).

4) Hough Transform: We used the Hough Transform
algorithm [11] to identify any lines particularly straight lines
within the binary images previously produced. This will
create straight lines for any straight edges. However, the
length of the lane lines on the road are inconsistent as seen
on (Figure 18a). A raw Hough Transform algorithm also
produced more than 2 lines with varies length. Therefore, we
combine the arrays of Hough Transform’s lines on the left
with a simple average function to produce one single line on
the left side. The same average function applied to the right
line. The result will product 2 blue straight lines with the
same consistent length (Figure 18b).

5) Video output processing: We placed the the image of
the lines on top of the original color image to create the
perception for the car to see the lane lines on the road. We
then modified the python script to take the video as an input
and display the output of processed video at the same time.
This lane detection python script can be flashed into Nvidia
Jetson Nano or Rasberry Pi module to produce real-time
video processing. Some of the challenges noticed based on

(a) Edge Detected (b) Lane Lines Detected

Fig. 18: Smoothen the Thickness and Fix the Length of the
Line

the result of this work, it is not yet robust and not applicable
for all type of road lines. Sometimes, there’s only a line on
one side of the road and it will crash the running script.
The lane detection was tested successfully on a PC using a
recorded video. An example of the final result of the lane
detection is as shown on Figure 19.

Fig. 19: Final Result for Lane Keeping

VII. CONCLUSIONS AND FUTURE WORK

In this project we have developed an end to end perception
system for an autonomous driving assistant. With Jetson Nano
based sensor platform, we have collected data in the format
of rosbag. We have studied several perception algorithms.

The key future work includes testing the system on a faster
computing platform, capable of running the algorithms in the
car in real time. Regarding the camera-radar pipeline, we
plan to implement pedestrian tracking based on existing radar-
camera fusion. Regarding the 3D object detection algorithm,
we intend to take stereo camera point cloud to the model. But
the most critical task is to improve the speed and accuracy of
detection, we would look into the CenterNet for further study.
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